The Comparative Reactivity Method – a new tool to measure total OH Reactivity in ambient air
نویسنده
چکیده
Hydroxyl (OH) radicals play a vital role in maintaining the oxidizing capacity of the atmosphere. To understand variations in OH radicals both source and sink terms must be understood. Currently the overall sink term, or the total atmospheric reactivity to OH, is poorly constrained. Here, we present a new on-line method to directly measure the total OH reactivity (i.e. total loss rate of OH radicals) in a sampled air mass. In this method, a reactive molecule (X), not normally present in air, is passed through a glass reactor and its concentration is monitored with a suitable detector. OH radicals are then introduced in the glass reactor at a constant rate to react with X, first in the presence of zero air and then in the presence of ambient air containing VOCs and other OH reactive species. Comparing the amount of X exiting the reactor with and without the ambient air allows the air reactivity to be determined. In our existing set up, X is pyrrole and the detector used is a proton transfer reaction mass spectrometer. The present dynamic range for ambient air reactivity is about 6 to 300 s−1, with an overall maximum uncertainty of 25% above 8 s−1 and up to 50% between 6– 8 s−1. The system has been tested and calibrated with different single and mixed hydrocarbon standards showing excellent linearity and accountability with the reactivity of the standards. Potential interferences such as high NO in ambient air, varying relative humidity and photolysis of pyrrole within the setup have also been investigated. While interferences due changing humidity and photolysis of pyrrole are easily overcome by ensuring that humidity in the set up does not change drastically and the photolytic loss of pyrrole is measured and taken into account, respectively, NO>10 ppb in ambient air remains a significant interference for the current configuration of the instrument. Field tests in the tropical rainforest of Suriname (∼53 s−1) and the urban atmosphere Correspondence to: J. Williams ([email protected]) of Mainz (∼10 s−1) Germany, show the promise of the new method and indicate that a significant fraction of OH reactive species in the tropical forests is likely missed by current measurements. Suggestions for improvements to the technique and future applications are discussed.
منابع مشابه
Detailed characterization of a Comparative Reactivity Method (CRM) instrument for ambient OH reactivity measurements: experiments vs. modeling
The Hydroxyl radical (OH) is the main daytime oxidant in the troposphere, leading to the oxidation of Volatile Organic Compounds (VOCs) and the formation of harmful pollutants such as ozone (O3) and Secondary Organic Aerosols (SOA). While OH plays a key role in tropospheric chemistry, recent studies have highlighted that there are still uncertainties associated with the OH budget, i.e the ident...
متن کاملCHAPITRE IV : Mesure de la réactivité atmosphérique totale avec les radicaux hydroxyles à Paris pendant la campagne
Hydroxyl radicals play a central role in the troposphere as they control the lifetime of many trace gases. Measurement of OH reactivity (OH loss rate) is important to better constrain the OH budget and also to evaluate the completeness of measured VOC budget. Total atmospheric OH reactivity was measured for the first time in an European Megacity: Paris and its surrounding areas with 12 million ...
متن کاملA Reactivity Based Emission Inventory for the South Pars and Its Implication for Ozone Pollution Control
The South Pars zone in Iran encompasses the largest gas refineries and petrochemical complexes in the world. In the South Pars zone, elevated concentrations of reactive hydrocarbons co-emitted with nitrogen oxides from industrial facilities lead to substantial ozone production downwind. To understand the role of these emissions on the ozone formation and, to formulate appropriate control st...
متن کاملAn insight into effect of surface functional groups on reactivity of Sphalerite (110) surface with Xanthate collector: a DFT study
The reactivity of the protonated and hydroxylated sphalerite (1 1 0) surface with xanthate was simulated using the density functional theory (DFT). The difference between the energy of the lowest unoccupied molecular orbital of the sphalerite surface and the energy of the highest occupied molecular orbital of xanthate ( was used to compare the reaction capability of xanthate with fresh and fun...
متن کاملAirborne measurement of OH reactivity during INTEX-B
The measurement of OH reactivity, the inverse of the OH lifetime, provides a powerful tool to investigate atmospheric photochemistry. A new airborne OH reactivity instrument was designed and deployed for the first time on the NASA DC-8 aircraft during the second phase of Intercontinental Chemical Transport Experiment-B (INTEX-B) campaign, which was focused on the Asian pollution outflow over Pa...
متن کامل